西师大版小学数学教案精选8篇

时间:2024-04-05 作者:Animai

优质的教案可以帮助我们更好地引导学生进行学习和思考,提高他们的学习效果和学习兴趣,富有挑战性的教案能够激发学生的学习潜能,下面是尚华范文网小编为您分享的西师大版小学数学教案精选8篇,感谢您的参阅。

西师大版小学数学教案精选8篇

西师大版小学数学教案篇1

教学目的:

1、在实际情境中,理解路程、时间与速度之间的关系。

2、根据路程、时间与速度的关系,解决生活中简单的问题。3.树立生活中处处有数学的思想。

教学重点:理解路程、时间与速度之间的关系。

教学难点:理解路程、时间与速度之间的关系。

教学准备:主题图。

教学方法:谈话法;情境教学法。

一、谈话导入

师:在生活中,我们经常会遇到一些数学问题,这些问题和我们的日常生活息息相关,我们一起来看看吧。(出示主题图)

二、探索路程、时间与速度之间的关系

1.学生思考:要想知道谁跑得快,要比较什么?你有什么办法?

2.小组交流,明确:要想知道谁跑得快,就要看看同一时间里谁跑得远,谁就快。这个同一时间在这里就是1小时,那么拖拉机1小时跑了120÷2=60(千米)而面包车1小时跑了210÷3=70(千米)60<70,因此,面包车跑得快。

3.教师引导学生了解单位时间即为:1时、1分、1秒。在单位时间内所行驶的路程叫做速度。本题中,拖拉机的速度是60千米/时,而面包车的速度为70千米/时。因此,面包车的速度快。

联系生活实际,使学生明白要想知道谁跑得快,不是看谁行驶的路程多,而是要看统一时间内谁跑得远,建立单位时间的表象。

4.让学生根据这一情境得出路程、时间、速度三者的关系。

速度=路程÷时间

5.看一看。

出示生活中常见的数据,拓展学生对日常生活中速度的认识,也可以把学生课前收集到的数据进行交流。

通过实例,给予学生充分的自主探索的空间,真正明确了路程、时间、速度这三者的关系。培养学生收集、处理信息的能力和获取知识的能力。

三、巩固练习

1.完成“试一试”第一题。让学生看图,根据情境解答。进一步巩固路程、时间、速度三者的关系。

2.完成“试一试”第2题。

三个算式结合具体情境去体会、思考、交流、汇报。让学生进一步理清三者关系。

四、总结谈话这节课,你有什么收获呢?

第4课时:路程、时间与速度

教学目的:

1、根据路程、时间与速度的关系,解决生活中简单的问题。

2、树立生活中处处有数学的思想。

教学重点难点:根据路程、时间与速度的关系,解决生活中简单的问题。

一、复习导入

上节课,我们了解了路程、时间与速度之间的关系,谁来说说这三者之间存在什么样的关系?

让学生理清三者关系,为下面的练习打基础。

二、综合练习

1.完成“练一练”第一题。

2.完成“练一练”第二题。根据情境图列式计算。

3.完成“练一练”第三题。根据第1个算式写出第2、3个算式的得数,寻找其中的规律。

4.完成“练一练”第四题。列式计算后,与自己的同桌再出一组这样的题并解答。

在解决问题过程中,培养学生策略意识。让学生通过观察得出结果、发现规律,培养学生丰富的想像力,促进学生思维的发展。让学生自己编题,是对所学知识的再次巩固和延伸,这会大大激发学生学习热情。

三、实践应用

完成“练一练”第五题。

看线段图解答,然后提问:15分、35分分别在什么位置。让学生在解决问题中体会路程、时间、速度三者的关系。

四、拓展练习指导学生完成数学自主学习相关内容。

西师大版小学数学教案篇2

教学内容:

教科书第1页的例1、试一试和练一练,练习一的第1~3题。

教学目标:

1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

教学过程:

一、教学例1

1、出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?

提出要求:根据这两个已知条件,你能求出哪些问题?

引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

2、引导思考: 这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?

小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

启发:根据上面的讨论,你打算怎样列式解答这个问题?

学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?

3、进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?

学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

联系学生的讨论明确:从125%中去掉与单位1相同的部分,就是实际造林比原计划多的百分数。

提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?

二、教学“试一试”

1、出示问题:原计划造林比实际少百分之几?

启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

学生作出猜想后,暂不作评价。

提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?

2、学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

三、指导完成“练一练”

1、要求学生自由读题。

2、提问:你是怎样理解“20xx年在读研究生的人数比20xx年增加了百分之几”这个问题的?

学生讨论后,要求他们各自列式解答。

3、根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

四、指导完成练习一第1~3题

1、做练习一第1题。

可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

2、做练习一第2题。

先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

3、做练习一第3题。

先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。可提醒学生利用计算器进行计算。

五、全课小结

通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?

西师大版小学数学教案篇3

教学内容:

二期教材四年级第一学期课本p22-23

教材分析:

本节内容主要是对常用的面积单位进行一个梳理,一方面进一步借助学生的低阶面积单位的表象累积形成平方千米的表象,另一方面,使学生熟悉平方厘米、平方分米、平方米、平方千米之间的进率关系,能够进行简单的换算。

教学目标:

(一)知识与技能

1、初步学会根据实际需要,选用适当的面积单位,丰富面积单位的量感。

2、借助问题情景,合作探究平方米与平方千米之间的进率,进一步丰富1平方千米的量感。

(二)过程与方法

经历常用的面积单位的梳理过程,自主建构面积单位的换算方法,初步提高整理归纳能力。

(三)情感与态度

逐步体会数学与日常生活的密切联系,感知数学的价值。

重点难点:

1、丰富1平方千米的量感,掌握常用面积单位间的换算方法。

2、理解常用面积单位间进率的推算方法。

教学过程:

一、引入阶段

1、感受平方千米

同学们,你们觉得我们学校大吗?我们泗泾镇大吗?那么松江区呢?这些区域用我们新学的面积单位km2 来表示,是多少呢?请看大屏幕:(出示)

我们美丽的校园占地面积约0.03平方千米。

我们家园——泗泾镇占地面积约24.2平方千米。

我们的松江区总面积约604平方千米。

你得到了什么信息?有什么感受?你觉得平方千米常用在什么样的区域?(对比,交流)

小结:平方千米常用来表示面积大的区域。

[从学生所处的生活环境展开,通过“区域大”但表示的“数字小”这一强烈对比,丰富平方千米的量感]

2、感知常用的小面积单位

我们还学过哪些常用的面积单位?谁能从大到小说出来呢?它们之间的进率是多少呢?让我们用手势来比划一下它们的大小吧!1km2能用手势来表示吗?(不能)为什么?(1km2太大)

板书

km2 1 m2=100dm2 1 dm2=100cm2 [通过记忆性口答与形象的手势感知,双重复习所学面积单位,再现常用面积单位的`表象。]

3、感知练习

同学们对面积单位的量感不错,就让我们打开课本p23页,完成第三题,比比看,谁填的有快又准

在下面( )中填入适当的面积单位(课本23页)。

一张邮票的面积约9( )

一张乒乓球台面约410( )

一间教室的面积约63( )

一张软盘的面积约1( )

一个排球场占地约162( )

上海野生动物园占地约2( )

[ 在前面面积单位的充分感知铺垫下,通过填写适当的单位,促使学生将熟悉实物的某个面或某块区域与面积单位建立起联系,既诊断学生已学知识的掌握情况,又激活他们已有单位面积的量感。]

二、探究阶段

1、情景设疑:通过刚才的单位填写,同学们对面积单位的都很熟悉了,接着让我们来解决前面学习中留下的问题:(出示)如果1 m2可以挤下17人,那么1 km2能不能挤得下整个上海的人?(上海总人口为16737700人)

要想解决这个问题,我们需要知道什么?同桌交流:需要知道1 km2等于多少m2 , 即km2与m2之间的进率,就可以求出1 km2可以挤多少人,最终把问题解决。

2、合作探究:我们知道1 km2就是边长为1 km 的正方形的面积,(出示边长为1 km 的正方形图形)。

那么km2与m2之间的进率是多少呢?你们能从1 km2的定义来找出它们之间的进率吗?请小组合作完成。

(1)组内尝试解决 ,师巡视指导。

(2)全班交流解法:(板书)

1km × 1km = 1 km2

1000m× 1000m = 1000000

m2 1km2=1000000m2

(3)再次交流:通过在1km2定义的关系式中把km转换成m,我们很容易就找到了它们之间的关系。现在让我们同桌之间再把这个过程互相交流一下。

3、问题解决:知道了1km2=1000000m2,那么1 km2能不能挤得下整个上海的人呢?谁来说说看?指名交流。这个结果让你有什么想说的吗?

4、完善面积单位进率:现在我们已经把所学的面积单位之间的进率都找到了,请同学们把p22的面积单位的关系填写完整。(媒体演示课本23页单位面积的累积过程)

1 km2=( )m2 1 m2=( )dm2 1 dm2=( )cm2

[通过问题设疑,激发学生的求知欲,让学生主动去探究km2和m2的进率。为了使学生形成清晰的量感,启发学生从定义去推理,把学生的思维引入深处,从而让学生在合作的尝试计算中直观获得1 km2=1000000m2 。其实学生以前在学习平方米,平方分米,平方厘米间的进率时已经经历了这样一个推理过程,在这里学生运用以往的经验解决今天所学的新问题,体现了知识的迁移。通过平方米和平方千米间关系的探究,对学生进一步理解单位面积的含义和进率的由来,促进学生表象记忆的形成都有好处,也激发了学生的求知-和解决问题的兴趣,为以下单位换算提供了一个良好的情知背景。]

三、运用阶段

1、分层练习:(说出思考过程)

(1)25 m2=( )dm 23 km2=( )m2

(2)3400 dm2=( )m2 9000000 m2=( )km2 580cm2=( )dm2

(3)70000000 ㎡ -7k㎡=( ) k㎡

[ 学生在三年级时已经积累了一些重量、长度、面积单位换算的经验,并且会用小数表示单位之间的转换。这里先安排两组“从高到低”与“从低到高”的单位转换练习,就想让学生通过尝试找到换算的一般方法:高级单位化成低级单位时乘进率,低级单位聚成高级单位时除以进率。从而在思考方法上予以归纳提升,建构单位换算的基本策略。接着出示带有不同单位的计算题,提高学生的综合运用能力。同时借助学生思考过程的表达,便于检测学生对方法的理解,发展他们的演绎思维。]

2、拓展练习(同桌讨论)

判断下列各题是否正确,错的请改正。

(1)一个铅笔盒表面的宽度约5 c㎡

(2)教室的面积约30d㎡

(3) 一个粉笔盒的表面约0.75 c㎡

(4)上海市的总面积约6341000000k ㎡

[ 在实际应用中,学生往往对长度单位和面积单位容易混淆,并且在选用面积单位时不善于实际问题的需要。通过判断纠错练习,一方面强化长度单位和面积单位的区别,另一方面想从“数”与“量”两个维度探索修改的方法(修正数据或计量单位),既巩固了单位面积的大小观念,又渗透小数点位置移动引起数的大小变化的思想,拓展了学生的思维。]

3、生活应用:(小组合作)

出示:为了扩大我国的绿化面积,人们要在长3km,宽2km的一块长方形的高原上植树,如果每平方米栽1棵树, 运来60万棵树苗够吗?

解决这个问题我们要先算出什么?需要注意什么?写出你们的解题过程。交流探讨并板书解题过程。

[通过问题解决,再现本节课的重点新知“平方千米与平方米的转化”,同时让学生通过层层问题的分析,理清问题解决的思路,拓展思维,感受数学在生活问题解决中的应用价值。]

四、总结

这节课我们一起整理了“从平方厘米到平方千米”(板书)的面积单位,谁来谈谈这节课中你的收获?

西师大版小学数学教案篇4

教学目标:

1、结合具体情境,借助小数的面积模型,探索简单的小数的乘法计算方法,理解算理,积累数学活动经验.

2、探索积的小数位数和乘数小数位数的关系,并能利用这个关系进行简单的小数乘法计算.

教学重点:

明确积的小数位数和乘数小数位数的关系.

教学难点:

正确计算小数乘法.

学情简析与常见问题:

学生在学习“积的小数位数和乘数小数位数的关系”之前,已经学习了小数乘整数的计算方法,掌握了相关的算理,这为学习该内容奠定了基础.但小数乘小数,学生也能理解其算理,但计算出结果后,小数点的位数应放在哪个位置上合适,是学生常拿不准的问题,也是该课应该重点关注的.

教学环节教师活动学生活动环节目标课件页码

一、复习引入

1、课件出示:

0.86×10

3.5÷100

你会计算上面的算式吗?能说说理由吗?

2、今天我们就继续学习小数的乘法.学生回顾知识后回答.

0.86×10就是把0.86的小数点向右移动一位.

3.5÷100就是把3.5的小数点向左移动两位.

复习激活原有认知,为探索小数乘小数的算法和算理做好铺垫.

二、自主探索

1、课件出示教材第38页情境图.通过观察,你知道了什么?

由已知信息,你发现了什么?

你能根据以上条件,提出数学问题吗?

在解决这些问题之前,你能告诉我求面积需要注意什么吗?

请分别求出图中各部分的面积.

2、汇报展示学生的计算方法:

板书学生的计算方法:

30×20=600

3×2=6

0.3×0.2=0.06

师生总结积和乘数的小数位数的关系.观察思考后回答:街心广场长30米,宽20米.

中心花坛长3米,宽2米

广场上的地砖长0.3米,宽0.2米

学生独立思考后回答.

学生独立思考后回答.

学生回顾反思.

学生独立计算.

首先学生在小组内讨论.,然后再将小组讨论的结果和全班同学分享.

观察乘数和积有什么关系?

让学生厘清小数乘小数与整数乘法的联系.

让学生感受生活中离不开小数乘法.

三、课末总结通过今天的学习,你学会了什么?学生总结回顾形成知识体系.巩固教学重点.

板书设计:

街心广场

30×20=600

3×2=6

0.3×0.2=0.06

在乘法算式中,一个数扩大10倍(或缩小到原来的1/10)另一个数也扩大10倍(或缩小到原来的1/10)积就扩大100倍(或缩小到原来的1/100)

作业设计:

基础作业:练一练的第1————4题

选做:练一练的第5题

西师大版小学数学教案篇5

教学内容:

例5(乘加运算中的简便计算)

教学目标:

1.进一步熟练学生进行简便计算的方法。

2.能熟练运用简便方法解决实际中的问题。

教学过程:

一、主题图引入

观察主题图。

引导学生观察主题图。

二、新授

请你们根据图中的条件与问题,进行小组讨论,看看这个问题如何解决。

巡视指导。

汇报:

(1)31×2+30×2+26

=(31+30)×2+26

=61×2+26

=122+26

=148(天)

(2)7×21+1

=147+1

=148(天)

在按月计算的过程中,运用了乘法分配律。

按周计算的思路不难理解,但计数一共有多少周比较容易出错。可以让同桌互相指着月历边点、边数,也可以请能正确计数的同学介绍自己是怎样数的。

根据主题图的数据你们还能提出什么问题?

学生根据条件问题提问。

教师根据学生的提问板书。

学生选择自己感兴趣的问题进行独立解答。

解答后小组互相交流。说说自己完成的是哪个问题,怎样解决的?有没有用到运算定律,怎样运用的?

三、小结

学生谈收获及应该注意的问题。

谈谈在今天的学习后,你对运算定律的应用又有了什么样的认识和感受。

四、巩固练习

p46—47/1、3、7、8

五、作业:准备实践活动《营养午餐》

板书设计:

乘、加运算中的简便计算

(1)31×2+30×2+26 (2)7×21+1

=(31+30)×2+26 =147+1

=61×2+26 =148(天)

=122+26

=148(天)

课后小结:

西师大版小学数学教案篇6

设计说明

本节课针对方程的整理和复习分两个层次展开。第一个层次:复习用字母表示数的作用,使学生可以简明地表达数量关系,旨在举一反三,启发学生想到更多的实例。引导学生经历回顾和整理与方程有关知识的过程。会解决简单问题,感受方程在解决问题中的价值,培养初步的代数思想。第二个层次:请学生列方程并求出方程的解,目的是引导学生把有关方程的知识进行整理,对方程的概念、方程与等式的关系、什么叫解方程、解方程的依据(即等式的性质)、在解决问题时如何找等量关系、如何根据等量关系列出方程等知识进行回顾。帮助学生巩固基础,熟练掌握列方程解决实际问题的方法,同时进一步体会用方程解决问题的优越性。

课前准备

教师准备 ppt课件

教学过程

⊙独立思考,构建知识网络

1.学习构建知识网络。

(1)归纳整理。

师:本学期我们学习了哪些有关方程的知识?请同学们先自行整理,再在组内交流。

(学生回忆整理,小组讨论交流,教师巡视指导)

(2)构建知识网络。

师:怎样展示相关的知识才能一目了然呢?现在,就让我们一起来完成知识网络的构建。

(引导学生有序地回顾已学的有关方程的知识,结合学生的回答,课件出示建立知识网络的过程)

设计意图:通过引导学生回顾、整理所学知识,使学生对所学的方程知识有一个比较系统的.了解,并学会如何构建完整的知识网络。

2.展示构建的知识网络

方程

设计意图:对学过的知识进行系统化的梳理,通过展示,使学生明确这一板块所呈现的内容,加深对所学知识的理解和掌握,形成完善的知识体系。

⊙复习,分项整理

1.复习用字母表示数。

(1)课件出示教材96页6、7题。

请学生先独立解决问题,然后说一说用字母表示数的方法。

小结:

①当数字与字母相乘时,去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如4×a可以写作4·a或4a。

②当字母与字母相乘时,可以用点表示乘号或直接去掉乘号,如a×b可以写作a·b或ab;a×a可以写作a·a或a2。

③当字母与1相乘时,1可以省略不写,只写字母本身,如1×a可以写作a。

(2)填一填。

①小明的身高是138厘米,比哥哥矮a厘米,哥哥的身高是( )厘米。

②一个正方形的边长是a米,它的周长是( )米,面积是( )平方米。

③一堆煤有a吨(a>5b),每车运b吨,运了5车后,还剩( )吨。

④在自然数中,与自然数a相邻的两个数是( )和( ),它们三个数的和是( )。(a>1)

指名回答,集体订正。

(3)判断。

①a×b×8可以简写成ab8。( )

②a2和2a相等。( )

③a÷b中,a、b可以是任何数。( )

设计意图:让学生回顾用字母表示数的意义,体会代数思想,巩固一些特殊的写法:数与字母之间的乘号可以省略不写,数要写在字母的前面等。

西师大版小学数学教案篇7

教学内容

课本第4—5页中的例3及相应的“算一算”,“课堂活动”中的第1、2题。

教学目标

1、通过购物的情境,感受混合运算与生活的密切联系,体会数学的实用价值。

2、在解决问题的过程中使学生体会到小括号的作用,能正确计算带有小括号的两步混合运算z

3、培养学生认真、仔细的学习习惯。

教学重难点

重点:通过购物情境,掌握混合运算与生活的联系。

难点:在解决问题的过程中体会括号的作用,能正确计算带有小括号的两步混合运算。

教学准备

例3的教学情境挂图。

教学过程

一、前题诊测

1、提问:不含括号的四则混合运算的运算顺序是什么?

2、计算:24+480÷6205÷5×8

432-23+5525×18-400

先指名口答运算顺序,再让学生独立计算,在此基础上进行全班反馈、矫正。

二、探索新知

1、教学例3。

出示例3教学情境图,引导学生认真观察。

(1)理解图意。

问:从图上你能知道了什么?

(2)引导解决问题。

①先让学生用分步式独立解决“儿童衣服多少元一件”这个问题,组织全班交流,说说分步式中每一步求的是什么?

②让学生试着用一个算式解决问题,组织讨论“213-78÷3”这个算式是否符合解决此题的顺序,进而探讨出用小括号“()”来帮忙。

③引导归纳出:有小括号的混合运算式题计算时要先算小括号里面的。

2、练习。

让学生完成课本第4页中的“算一算”。

先指名学生口答运算顺序,然后让学生独立计算,最后进行全班反馈矫正。

三、巩固深化

指导学生完成“课堂活动”中的第1、2题。

四、全课小结

提问:带有小括号的混合运算的顺序是怎样的?请举例说明。

五、作业布置

练习一第7页第4题。

西师大版小学数学教案篇8

教学内容:

北师大版五年级上册第80、81页。

教材分析:

“鸡兔同笼”问题是我国古代的一道数学趣题,最早出现在《孙子算经》中。它集题型的趣味性、解法的多样性、应用的广泛性于一体,是实施开放式教学的好题材。

教材中要求掌握3种解题方法(逐一列表法、跳跃列表法、取中列表法),要求学生在教师的指导下,通过小组合作,运用假设举例列表等方法,寻找解决的结果。教学中,要求教师不宜补充其他解法,以免分散学生的注意力。

学情分析:

五年级学生已经学了一些用列表法解决问题的策略,?还有一些学生在兴趣小组、奥数等的学习中已经学过“鸡兔同笼”问题。学生的程度参差不齐。学生的思维活跃?敢想、敢说,有一定的小组合作经验。

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用列表、假设的方法解决“鸡兔同笼”问题,通过列表尝试和不断调整的过程,从中体会解决问题的一般策略—列表,让学生学会从不同角度分析,掌握解题的策略与方法。

3、在解决问题的过程中,培养学生的迁移思维能力。合作、交流等学习品质和能力。

教学重点:

让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。

教学难点:

运用学到的解题策略解决生活中的实际问题。

教学过程:

一、创设情境

(出示儿歌)鸡兔同笼不知数,三十六头笼中露,数数脚有一百只,几只鸡来几只兔?

师:这就是我国民间的三大趣题之一,最早记载在1500年前的数学名著《孙子算经》中(课件出示古书动画打开书出现原题),原题是这样的,请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁知道,这是一个什么问题?(鸡兔同笼问题,课件出示鸡兔同笼情境图)这节课我们就来研究中国历的数学趣题

“鸡兔同笼”。(板书:鸡兔同笼)

师:谁能用自己的话说说这道题的意思?(鸡兔同笼,上面数有35个头,从下面数共有94条腿,问鸡、兔各有几只?)

师:这道古代趣题你能解决吗?我们还是化繁为简,从简单入手吧!

二、探索新知

出示例题:鸡兔同笼,有20个头,54条腿,鸡兔个有几只?

1、明确问题,独立思考通过读题你获得了那些数学信息?这道题里还有隐藏的数学信息吗?

同学们先来猜一猜鸡、兔可能各有多少只?(找一两个同学猜测)

到底是几只鸡几只兔呢?

2、小组合作交流。

师:小组讨论,要解决这个问题可以用什么方法?

师:把你们的方法写在纸上。可以使用桌子上老师提供的表格。

师:哪个小组说说你们的想法?

小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

师:腿多了,减少谁的只数,增加谁的只数?

师:你们是怎么想到这种方法的?

生:在旅游费用的租车、租船中,我们就是用列表的方法找出答案,这题的类型跟那差不多,我们想,也可以用这种尝试列表的方法找出答案。

师:这种列表法有什么特点?

生:鸡一只一只地增加,兔子一只一只地减少。

师:谁能给这种列表法取个名字?

生:逐一列表法。

师:还有哪些小组采用不同的列表法?

小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从1只鸡,19只兔直接跳到6只鸡,14只兔。最后也得到了13只鸡,7只兔。

师:腿的总条数多了或少了你们组是怎么调整的,也就是你们的调整策略是什么?

生:腿多了,我们减少兔子的只数,腿少了我们增加兔子的只数。

师:我们也给这种方法取个名字,好吗?

生:跳跃列表法。

小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

师:你能给这种方法取个名字吗?

生:取中列表法

师(展示台展示三张表格)同学们三张表格都能很好地求出鸡、兔的只数,哪种方法最捷径。

生1:取中列表法直取中间数减少了“试”的过程能更简便、快捷地找到答案。

生2:我认为应该三种列表法结合使用,先用取中列表法减少一半的猜测数字,再用跳跃列表法加快猜测的速度,在接近答案时用逐一列表法。

生3::那是数字大时使用,数字小时,还是使用逐一列表法好,它答案不会重复、不会遗漏。

小组4:(展示台展示)我们组认为还是采用列方程法最简便、快捷,先假设鸡的只数为ⅹ,兔子的只数就为20-x。

列式是:2x+4(20-x)=54 解得x=13 兔子的只数是7. 师:你们小组的同学很聪明,但这种方法我们暂不讨论,有兴趣的同学,课后和老师一起向他们请教,好吗?

师:还有哪些组没有汇报?

小组5:我们组也是用列式法算出鸡、兔的只数(展示):假设全部是鸡

(54-20×2)÷(4-2)求出兔7只,鸡13只。

师:这种方法,我们也留在课后私下交流。

师:我们的祖先很聪明,为我们的祖先感到骄傲,其实老师也为你们感到骄傲,你们在这么短的时间内就想出了这么多解决问题的办法,你们很了不起!

四、方法应用,巩固新知

过渡语:、“鸡兔同笼”问题传到日本,日本人称它为“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”问题有什么相似之处?

1、师:除了“龟鹤问题”与“鸡兔同笼”问题类似以外,我们在实际生活中还有很多类似的

问题。(出示)学校举行乒乓球比赛,有单打和双打。12张乒乓球台上共有34人同时在打球。问:正在进行单打和双打的台子各有几张?

问:这题是否属于“鸡兔同笼”问题

2、师:我们班同学很聪明,会解“鸡兔同笼”类型的问题,那聪明的你,是否会出一道“鸡兔同笼”类型的题,考考其他组的同学呢?

3、(出示)一百个馒头,一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几人?

师:有兴趣的同学,课后思考这一趣题。

四、小结交流

今天这节课,我们跨越了1500多年的历史,即探讨了中国古代的数学名题,又解决了我们身边的一些数学问题。经过这节课,你有哪些收获?