教案的设计应该充分考虑学生的创业意识和就业能力,有目标性的教案能够帮助学生明确学习目标,以下是尚华范文网小编精心为您推荐的高一数学教案8篇,供大家参考。
高一数学教案篇1
教学目标:
使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.
教学重点:
函数的概念,函数定义域的求法.
教学难点:
函数概念的理解.
教学过程:
Ⅰ.课题导入
[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?
(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).
设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.
[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:
问题一:y=1(xr)是函数吗?
问题二:y=x与y=x2x 是同一个函数吗?
(学生思考,很难回答)
[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).
Ⅱ.讲授新课
[师]下面我们先看两个非空集合a、b的元素之间的一些对应关系的例子.
在(1)中,对应关系是乘2,即对于集合a中的每一个数n,集合b中都有一个数2n和它对应.
在(2)中,对应关系是求平方,即对于集合a中的每一个数m,集合b中都有一个平方数m2和它对应.
在(3)中,对应关系是求倒数,即对于集合a中的每一个数x,集合b中都有一个数 1x 和它对应.
请同学们观察3个对应,它们分别是怎样形式的对应呢?
[生]一对一、二对一、一对一.
[师]这3个对应的共同特点是什么呢?
[生甲]对于集合a中的任意一个数,按照某种对应关系,集合b中都有惟一的数和它对应.
[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.
现在我们把函数的概念进一步叙述如下:(板书)
设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有惟一确定的数f(x)和它对应,那么就称f︰ab为从集合a到集合b的一个函数.
记作:y=f(x),xa
其中x叫自变量,x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xa}叫函数的值域.
一次函数f(x)=ax+b(a0)的定义域是r,值域也是r.对于r中的任意一个数x,在r中都有一个数f(x)=ax+b(a0)和它对应.
反比例函数f(x)=kx (k0)的定义域是a={x|x0},值域是b={f(x)|f(x)0},对于a中的任意一个实数x,在b中都有一个实数f(x)= kx (k0)和它对应.
二次函数f(x)=ax2+bx+c(a0)的定义域是r,值域是当a0时b={f(x)|f(x)4ac-b24a };当a0时,b={f(x)|f(x)4ac-b24a },它使得r中的任意一个数x与b中的数f(x)=ax2+bx+c(a0)对应.
函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.
y=1(xr)是函数,因为对于实数集r中的任何一个数x,按照对应关系函数值是1,在r中y都有惟一确定的值1与它对应,所以说y是x的函数.
y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是r,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.
[师]理解函数的定义,我们应该注意些什么呢?
(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)
注意:①函数是非空数集到非空数集上的一种对应.
②符号f:ab表示a到b的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.
③集合a中数的任意性,集合b中数的惟一性.
④f表示对应关系,在不同的函数中,f的具体含义不一样.
⑤f(x)是一个符号,绝对不能理解为f与x的乘积.
[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、f(x)、g(x)等符号来表示
Ⅲ.例题分析
[例1]求下列函数的定义域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.
解:(1)x-20,即x2时,1x-2 有意义
这个函数的定义域是{x|x2}
(2)3x+20,即x-23 时3x+2 有意义
函数y=3x+2 的定义域是[-23 ,+)
(3) x+10 x2
这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).
注意:函数的定义域可用三种方法表示:不等式、集合、区间.
从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数集r;
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;
(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;
(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);
(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.
例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.
由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.
[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.
下面我们来看求函数式的值应该怎样进行呢?
[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.
[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!
[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.
[师]生乙的回答完整吗?
[生]完整!(课本上就是如生乙所述那样写的).
[师]大家说,判定两个函数是否相同的依据是什么?
[生]函数的定义.
[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?
(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)
(无人回答)
[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!
(生恍然大悟,我们怎么就没想到呢?)
[例2]求下列函数的值域
(1)y=1-2x (xr) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.
对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.
对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.
解:(1)yr
(2)y{1,0,-1}
(3)画出y=x2+4x+3(-31)的图象,如图所示,
当x[-3,1]时,得y[-1,8]
Ⅳ.课堂练习
课本p24练习17.
Ⅴ.课时小结
本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)
Ⅵ.课后作业
课本p28,习题1、2. 文 章来
高一数学教案篇2
一、教学内容:椭圆的方程
要求:理解椭圆的标准方程和几何性质.
重点:椭圆的方程与几何性质.
难点:椭圆的方程与几何性质.
二、点:
1、椭圆的定义、标准方程、图形和性质
定 义
第一定义:平面内与两个定点 )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距
第二定义:
平面内到动点距离与到定直线距离的比是常数e.(0
标准方程
焦点在x轴上
焦点在y轴上
图 形
焦点在x轴上
焦点在y轴上
性 质
焦点在x轴上
范 围:
对称性: 轴、 轴、原点.
顶点: , .
离心率:e
概念:椭圆焦距与长轴长之比
定义式:
范围:
2、椭圆中a,b,c,e的关系是:(1)定义:r1+r2=2a
(2)余弦定理: + -2r1r2cos(3)面积: = r1r2 sin ?2c y0 (其中p( )
三、基础训练:
1、椭圆 的标准方程为 ,焦点坐标是 ,长轴长为___2____,短轴长为2、椭圆 的值是__3或5__;
3、两个焦点的坐标分别为 ___;
4、已知椭圆 上一点p到椭圆一个焦点 的距离是7,则点p到另一个焦点5、设f是椭圆的一个焦点,b1b是短轴, ,则椭圆的离心率为6、方程 =10,化简的结果是 ;
满足方程7、若椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为
8、直线y=kx-2与焦点在x轴上的椭圆9、在平面直角坐标系 顶点 ,顶点 在椭圆 上,则10、已知点f是椭圆 的右焦点,点a(4,1)是椭圆内的一点,点p(x,y)(x≥0)是椭圆上的一个动点,则 的最大值是 8 .
?典型例题】
例1、(1)已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,短轴长为4,求椭圆的方程.
解:设方程为 .
所求方程为
(2)中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.
解:设方程为 .
所求方程为(3)已知三点p,(5,2),f1 (-6,0),f2 (6,0).设点p,f1,f2关于直线y=x的对称点分别为 ,求以 为焦点且过点 的椭圆方程 .
解:(1)由题意可设所求椭圆的标准方程为 ∴所以所求椭圆的标准方程为(4)求经过点m( , 1)的椭圆的标准方程.
解:设方程为
例2、如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心) 为一个焦点的椭圆,已知它的近地点a(离地面最近的点)距地面439km,远地点b(离地面最远的点)距地面2384km,并且 、a、b在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程 (精确到1km).
解:建立如图所示直角坐标系,使点a、b、 在 轴上,
则 =oa-o = a=6371+439=6810
解得 =7782.5, =972.5
卫星运行的轨道方程为
例3、已知定圆
分析:由两圆内切,圆心距等于半径之差的绝对值 根据图形,用符号表示此结论:
上式可以变形为 ,又因为 ,所以圆心m的轨迹是以p,q为焦点的椭圆
解:知圆可化为:圆心q(3,0),
设动圆圆心为 ,则 为半径 又圆m和圆q内切,所以 ,
即 ,故m的轨迹是以p,q为焦点的椭圆,且pq中点为原点,所以 ,故动圆圆心m的轨迹方程是:
例4、已知椭圆的焦点是 |和|(1)求椭圆的方程;
(2)若点p在第三象限,且∠ =120°,求 .
选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.
解:(1)由题设| |=2| |=4
∴ , 2c=2, ∴b=∴椭圆的方程为 .
(2)设∠ ,则∠ =60°-θ
由正弦定理得:
由等比定理得:
整理得: 故
说明:曲线上的点与焦点连线构成的三角形称曲线三角形,与曲线三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.对于第二问还可用后面的几何性质,借助焦半径公式余弦定理把p点横坐标先求出来,再去解三角形作答
例5、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点p向 轴作垂线段pp?@,求线段pp?@的中点m的轨迹(若m分 pp?@之比为 ,求点m的轨迹)
解:(1)当m是线段pp?@的中点时,设动点 ,则 的坐标为
因为点 在圆心为坐标原点半径为2的圆上,
所以有 所以点
(2)当m分 pp?@之比为 时,设动点 ,则 的坐标为
因为点 在圆心为坐标原点半径为2的圆上,所以有 ,
即所以点
例6、设向量 =(1, 0), =(x+m) +y =(x-m) +y + (i)求动点p(x,y)的轨迹方程;
(ii)已知点a(-1, 0),设直线y= (x-2)与点p的轨迹交于b、c两点,问是否存在实数m,使得 ?若存在,求出m的值;若不存在,请说明理由.
解:(i)∵ =(1, 0), =(0, 1), =6
上式即为点p(x, y)到点(-m, 0)与到点(m, 0)距离之和为6.记f1(-m, 0),f2(m, 0)(0
∴ pf1+pf2=6>f1f2
又∵x>0,∴p点的轨迹是以f1、f2为焦点的椭圆的右半部分.
∵ 2a=6,∴a=3
又∵ 2c=2m,∴ c=m,b2=a2-c2=9-m2
∴ 所求轨迹方程为 (x>0,0<m<3)
( ii )设b(x1, y1),c(x2, y2),
∴∴ 而y1y2= (x1-2)? (x2-2)
= [x1x2-2(x1+x2)+4]
∴ [x1x2-2(x1+x2)+4]
= [10x1x2+7(x1+x2)+13]
若存在实数m,使得 成立
则由 [10x1x2+7(x1+x2)+13]=
可得10x1x2+7(x1+x2)+10=0 ①
再由
消去y,得(10-m2)x2-4x+9m2-77=0 ②
因为直线与点p的轨迹有两个交点.
所以
由①、④、⑤解得m2= <9,且此时△>0
但由⑤,有9m2-77= <0与假设矛盾
∴ 不存在符合题意的实数m,使得
例7、已知c1: ,抛物线c2:(y-m)2=2px (p>0),且c1、c2的公共弦ab过椭圆c1的右焦点.
(Ⅰ)当ab⊥x轴时,求p、m的值,并判断抛物线c2的焦点是否在直线ab上;
(Ⅱ)若p= ,且抛物线c2的焦点在直线ab上,求m的值及直线ab的方程.
解:(Ⅰ)当ab⊥x轴时,点a、b关于x轴对称,所以m=0,直线ab的方程为x=1,从而点a的坐标为(1, )或(1,- ).
∵点a在抛物线上,∴
此时c2的焦点坐标为( ,0),该焦点不在直线ab上.
(Ⅱ)当c2的焦点在ab上时,由(Ⅰ)知直线ab的斜率存在,设直线ab的方程为y=k(x-1).
由 (kx-k-m)2= ①
因为c2的焦点f( ,m)在y=k(x-1)上.
所以k2x2- (k2+2)x+ =0 ②
设a(x1,y1),b(x2,y2),则x1+x2=
由
(3+4k2)x2-8k2x+4k2-12=0 ③
由于x1、x2也是方程③的两根,所以x1+x2=
从而 = k2=6即k=±
又m=- ∴m= 或m=-
当m= 时,直线ab的方程为y=- (x-1);
当m=- 时,直线ab的方程为y= (x-1).
例8、已知椭圆c: (a>0,b>0)的左、右焦点分别是f1、f2,离心率为e.直线l:y=ex+a与x轴,y轴分别交于点a、b,m是直线l与椭圆c的一个公共点,p是点f1关于直线l的对称点,设 = .
(Ⅰ)证明:(Ⅱ)若 ,△mf1f2的周长为6,写出椭圆c的方程;
(Ⅲ)确定解:(Ⅰ)因为a、b分别为直线l:y=ex+a与x轴、y轴的交点,所以a、b的坐标分别是a(- ,0),b(0,a).
由 得 这里∴m = ,a)
即 解得
(Ⅱ)当 时, ∴a=2c
由△mf1f2的周长为6,得2a+2c=6
∴a=2,c=1,b2=a2-c2=3
故所求椭圆c的方程为
(Ⅲ)∵pf1⊥l ∴∠pf1f2=90°+∠baf1为钝角,要使△pf1f2为等腰三角形,必有pf1=f1f2,即 pf1=c.
设点f1到l的距离为d,由
pf1= =得: =e ∴e2= 于是
即当(注:也可设p(x0,y0),解出x0,y0求之)
?模拟】
一、选择题
1、动点m到定点 和 的距离的和为8,则动点m的轨迹为 ( )
a、椭圆 b、线段 c、无图形 d、两条射线
2、设椭圆的两个焦点分别为f1、f2,过f2作椭圆长轴的垂线交椭圆于点p,若△f1pf2为等腰直角三角形,则椭圆的离心率是 ( )
a、 c、2- -1
3、(20xx年高考湖南卷)f1、f2是椭圆c: 的焦点,在c上满足pf1⊥pf2的点p的个数为( )
a、2个 b、4个 c、无数个 d、不确定
4、椭圆 的左、右焦点为f1、f2,一直线过f1交椭圆于a、b两点,则△abf2的周长为 ( )
a、32 b、16 c、8 d、4
5、已知点p在椭圆(x-2)2+2y2=1上,则 的最小值为( )
a、 c、
6、我们把离心率等于黄金比 是优美椭圆,f、a分别是它的左焦点和右顶点,b是它的短轴的一个端点,则 等于( )
a、 c、
二、填空题
7、椭圆 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .
8、设f是椭圆 的右焦点,且椭圆上至少有21个不同的点pi(i=1,2, ),使得fp1、fp2、fp3…组成公差为d的等差数列,则d的取值范围是 .
9、设 , 是椭圆 的两个焦点,p是椭圆上一点,且 ,则得 .
10、若椭圆 =1的准线平行于x轴则m的取值范围是
三、解答题
11、根据下列条件求椭圆的标准方程
(1)和椭圆 共准线,且离心率为 .
(2)已知p点在以坐标轴为对称轴的椭圆上,点p到两焦点的距离分别为 和 ,过p作长轴的垂线恰好过椭圆的一个焦点.
12、已知 轴上的一定点a(1,0),q为椭圆 上的动点,求aq中点m的轨迹方程
13、椭圆 的焦点为 =(3, -1)共线.
(1)求椭圆的离心率;
(2)设m是椭圆上任意一点,且 = 、 ∈r),证明 为定值.
?试题答案】
1、b
2、d
3、a
4、b
5、d(法一:设 ,则y=kx代入椭圆方程中得:(1+2k2)x2-4x+3=0,由△≥0得: .法二:用椭圆的参数方程及三角函数的有界性求解)
6、c
7、( ;(0, );6;10;8; ; .
8、 ∪
9、
10、m< 且m≠0.
11、(1)设椭圆方程 .
解得 , 所求椭圆方程为(2)由 .
所求椭圆方程为 的坐标为
因为点 为椭圆 上的动点
所以有
所以中点
13、解:设p点横坐标为x0,则 为钝角.当且仅当 .
14、(1)解:设椭圆方程 ,f(c,0),则直线ab的方程为y=x-c,代入 ,化简得:
x1x2=
由 =(x1+x2,y1+y2), 共线,得:3(y1+y2)+(x1+x2)=0,
又y1=x1-c,y2=x2-c
∴ 3(x1+x2-2c)+(x1+x2)=0,∴ x1+x2=
即 = ,∴ a2=3b2
∴ 高中地理 ,故离心率e= .
(2)证明:由(1)知a2=3b2,所以椭圆 可化为x2+3y2=3b2
设 = (x2,y2),∴ ,
∵m∴ ( )2+3( )2=3b2
即: )+ (由(1)知x1+x2= ,a2= 2,b2= c2.
x1x2= = 2
x1x2+3y1y2=x1x2+3(x1-c)(x2-c)
=4x1x2-3(x1+x2)c+3c2= 2- 2+3c2=0
又 =3b2代入①得
为定值,定值为1.
以上就是差异网为大家带来的7篇《高一数学教案》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。
高一数学教案篇3
一、学习要求①了解映射的概念,理解函数的概念;
②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;
③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;
④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;
⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.
二、两点解读
重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的`定义域值域互换关系解题.
难点:①抽象函数性质的研究;②二次方程根的分布.
三、课前训练
1.函数 的定义域是 ( d )
(a) (b) (c) (d)
2.函数 的反函数为 ( b )
(a) (b)
(c) (d)
3.设 则 .
4.设 ,函数 是增函数,则不等式 的解集为 (2,3)
四、典型例题
例1设 ,则 的定义域为 ( )
(a) (b)
(c) (d)
解:∵在 中,由 ,得 , ∴ ,
∴在 中, .
故选b
例2已知 是 上的减函数,那么a的取值范围是 ( )
(a) (b) (c) (d)
解:∵ 是 上的减函数,当 时, ,∴ ;又当 时, ,∴ ,∴ ,且 ,解得: .∴综上, ,故选c
例3函数 对于任意实数 满足条件 ,若 ,则
解:∵函数 对于任意实数 满足条件 ,
∴ ,即 的周期为4,
例4设 的反函数为 ,若 ×
,则 2
解:
∴m+n=3,f(m+n)=log3(3+6)=log39=2
(另解∵ ,
例5已知 是关于 的方程 的两个实根,则实数 为何值时, 大于3且 小于3?
解:令 ,则方程
的两个实根可以看成是抛物线 与 轴的两个交点(如图所示),
故有: ,所以: ,
解之得:
例6已知函数 有如下性质:如果常数 ,那么该函数在 上是减函数,在 上是增函数.如果函数 的值域为 ,求b的值;
解:函数 的最小值是 ,则 =6,∴ 。
高一数学教案篇4
学习目标:
(1)理解函数的概念
(2)会用集合与对应语言来刻画函数,
(3)了解构成函数的要素。
重点:
函数概念的理解
难点:
函数符号y=f(x)的理解
知识梳理:
自学课本p29—p31,填充以下空格。
1、设集合a是一个非空的实数集,对于a内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合a上的一个函数,记作 。
2、对函数 ,其中x叫做 ,x的取值范围(数集a)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。
3、因为函数的值域被 完全确定,所以确定一个函数只需要
?
4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:
① ;② 。
5、设a, b是两个实数,且a
(1)满足不等式 的实数x的集合叫做闭区间,记作 。
(2)满足不等式a
(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;
分别满足x≥a,x>a,x≤a,x
其中实数a, b表示区间的两端点。
完成课本p33,练习a 1、2;练习b 1、2、3。
例题解析
题型一:函数的概念
例1:下图中可表示函数y=f(x)的图像的只可能是( )
练习:设m={x| },n={y| },给出下列四个图像,其中能表示从集合m到集合n的函数关系的有____个。
题型二:相同函数的判断问题
例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与
④ 与 其中表示同一函数的是( )
a. ② ③ b. ② ④ c. ① ④ d. ④
练习:已知下列四组函数,表示同一函数的是( )
a. 和 b. 和
c. 和 d. 和
题型三:函数的定义域和值域问题
例3:求函数f(x)= 的定义域
练习:课本p33练习a组 4.
例4:求函数 , ,在0,1,2处的函数值和值域。
当堂检测
1、下列各组函数中,表示同一个函数的是( a )
a、 b、
c、 d、
2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( c )
a、5 b、-5 c、6 d、-6
3、给出下列四个命题:
① 函数就是两个数集之间的对应关系;
② 若函数的定义域只含有一个元素,则值域也只含有一个元素;
③ 因为 的函数值不随 的变化而变化,所以 不是函数;
④ 定义域和对应关系确定后,函数的值域也就确定了.
其中正确的有( b )
a. 1 个 b. 2 个 c. 3个 d. 4 个
4、下列函数完全相同的是 ( d )
a. , b. ,
c. , d. ,
5、在下列四个图形中,不能表示函数的图象的是 ( b )
6、设 ,则 等于 ( d )
a. b. c. 1 d.0
7、已知函数 ,求 的值.( )
高一数学教案篇5
一、教学目标:
1、知识与技能
(1)了解空间中两条直线的位置关系;
(2)理解异面直线的概念、画法,培养学生的空间想象能力;
(3)理解并掌握公理4;
(4)理解并掌握等角定理;
(5)异面直线所成角的定义、范围及应用。
2、过程与方法
(1)师生的共同讨论与讲授法相结合;
(2)让学生在学习过程不断归纳整理所学知识。
3、情感与价值
让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。
二、教学重点、难点
重点:1、异面直线的概念;
2、公理4及等角定理。
难点:异面直线所成角的计算。
三、学法与教学用具
1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型、三角板
四、教学思想
(一)创设情景、导入课题
1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。
2、师:那么,空间两条直线有多少种位置关系?(板书课题)
(二)讲授新课
1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。
教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:
2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律?
组织学生思考:
长方体abcd-a'b'c'd'中,bb'∥aa',dd'∥aa',bb'与dd'平行吗?
生:平行
再联系其他相应实例归纳出公理4
公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线
a∥b
c∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
例1、空间四边形abcd,e 、f、h、g分别是边ab、bc、cd、da的中点,求证:四边形efgh是平行四边形
3让学生观察、思考右图:
∠adc与a'd'c'、∠adc与∠a'b'c'的两边分别对应平行,这两组角的大小关系如何?
生:∠adc = a'd'c',∠adc + ∠a'b'c' = 1800
教师画出更具一般性的图形,师生共同归纳出如下定理
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
教师强调:并非所有关于平面图形的结论都可以推广到空间中来。
4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。
(1)师:如图,已知异面直线a、b,经过空间中任一点o作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角)。
(2)强调:
① a'与b'所成的角的大小只由a、b的相互位置来确定,与o的选择无关,为了简便,点o一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0,);
③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(3)例2(教材p47页例3)
(三)课堂练习
练习1、2
(四)课堂小结在师生互动中让学生了解:
(1)本节课学习了哪些知识内容?
(2)计算异面直线所成的角应注意什么?
(五)课后作业
1、判断题:
(1)a∥b c⊥a =>c⊥b ()
(2)a⊥c b⊥c =>a⊥b ()
2、填空题:在正方体abcd-a'b'c'd'中,与bd'成异面直线的有________条。
课后记:
高一数学教案篇6
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平. ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
(教师利用投影片,和学生讨论以下问题.)
例1 判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的语句叫做命题.
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0
中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”.
“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.
命题可分为简单命题和复合命题.
不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
(4)命题的表示:用p ,q ,r ,s ,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
3.巩固新课
例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.
(1)5 ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0 ,则a=0 .
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
高一数学教案篇7
?平面向量的基本定理及坐标表示》教案
教学准备
教学目标
平面向量复习
教学重难点
平面向量复习
教学过程
平面向量复习
知识点提要
一、向量的概念
1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的
2、叫做单位向量
3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行
4、且的向量叫做相等向量
5、叫做相反向量
二、向量的表示方法:几何表示法、字母表示法、坐标表示法
三、向量的加减法及其坐标运算
四、实数与向量的乘积
定义:实数 λ 与向量 的积是一个向量,记作λ
五、平面向量基本定理
如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底
六、向量共线/平行的充要条件
七、非零向量垂直的充要条件
八、线段的定比分点
设是上的 两点,p是上_________的任意一点,则存在实数,使_______________,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点
定比分点坐标公式及向量式
九、平面向量的数量积
(1)设两个非零向量a和b,作oa=a,ob=b,则∠aob=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ
(3)平面向量的数量积的坐标表示
十、平移
典例解读
1、给出下列命题:①若|a|=|b|,则a=b;②若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c
其中,正确命题的序号是______
2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____
3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为_____
4、下列算式中不正确的是( )
(a) ab+bc+ca=0 (b) ab-ac=bc
(c) 0·ab=0 (d)λ(μa)=(λμ)a
5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )
?函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )
(a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1
7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )
(a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5
(c)2x-y=0 (d)x+2y-5=0
8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=_________
9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分线长
10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )
(a)-5 (b)5 (c)7 (d)-1
11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )
(a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|
(c)(a·b)·c-(b·c)·a与b垂直 (d)(a·b)·c-(b·c)·a=0
12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )
(a)2 (b)0 (c)1 (d)2
16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)
17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一个内角为直角,求实数k的值
18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量
高一数学教案篇8
学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!
教学目标
1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的。
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项。
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。
3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。
教学建议
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。
(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。
(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。
上述提供的高一数学教案:数列希望能够符合大家的实际需要!
读书破万卷下笔如有神,以上就是一秘为大家整理的9篇《高一数学教案》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。